
In-App virtualization to bypass Android security
mechanisms of unrooted devices

Julien Thomas

julien.thomas@protektoid.com

Protektoid Project

March 1st, 2018 - Budapest

2 / 45 Outline

1 Introduction

2 Core principles of method calls/patching

3 Core principles of app virtualization/proxifying

4 Attacks through proxi�cation and patching

5 Aftermatch

6 Conclusion

Julien Thomas In-App virtualization and Android unrooted devices

3 / 45

Introduction

Objectives of this talk

Talk about app overriding techniques on Android

illustrate limitation of Android security caused by memory
rewriting
illustrate limitation of user knowledge
illustrate limitation of user perceptions

Talk with the view of a malicious attacker instead of security
expert/audit

instead of being a guy in a fully controled and permissive

environment, why not being a virus in an unfriendly

environment where capabilities are limited but gains are great?

Origin

Protektoid project
one understanding issue: how �hiding apps� apps (do not)
work?

Julien Thomas In-App virtualization and Android unrooted devices

3 / 45

Introduction

Objectives of this talk

Talk about app overriding techniques on Android

illustrate limitation of Android security caused by memory
rewriting
illustrate limitation of user knowledge
illustrate limitation of user perceptions

Talk with the view of a malicious attacker instead of security
expert/audit

instead of being a guy in a fully controled and permissive

environment, why not being a virus in an unfriendly

environment where capabilities are limited but gains are great?

Origin

Protektoid project
one understanding issue: how �hiding apps� apps (do not)
work?

Julien Thomas In-App virtualization and Android unrooted devices

4 / 45

Introduction

Memory rewriting?

Application execution

native code is executed
code is (pre-) compiled

(JIT vs OAT)

at some points, (part of) JAVA code is run compiled
at some points, (part of) JAVA execution �ow is set in memory
(ART structures)

Java methods (mainly virtual ones) patching

self
overriden DEX
sub-loaded applications (virtualization)

Memory access: JNI

Java brige to compiled lib (.so)

Julien Thomas In-App virtualization and Android unrooted devices

4 / 45

Introduction

Memory rewriting?

Application execution

native code is executed
code is (pre-) compiled

(JIT vs OAT)

at some points, (part of) JAVA code is run compiled
at some points, (part of) JAVA execution �ow is set in memory
(ART structures)

Java methods (mainly virtual ones) patching

self
overriden DEX
sub-loaded applications (virtualization)

Memory access: JNI

Java brige to compiled lib (.so)

Julien Thomas In-App virtualization and Android unrooted devices

4 / 45

Introduction

Memory rewriting?

Application execution

native code is executed
code is (pre-) compiled

(JIT vs OAT)

at some points, (part of) JAVA code is run compiled
at some points, (part of) JAVA execution �ow is set in memory
(ART structures)

Java methods (mainly virtual ones) patching

self
overriden DEX
sub-loaded applications (virtualization)

Memory access: JNI

Java brige to compiled lib (.so)

Julien Thomas In-App virtualization and Android unrooted devices

5 / 45

Introduction

Memory rewriting (2)?

https://source.android.com/devices/tech/dalvik/jit-compiler

Julien Thomas In-App virtualization and Android unrooted devices

6 / 45

Introduction

Guess it

Your environment

an app with local storage and networking:

a safe app HTTP that relies on HTTP protocol
a safe app HTTPS that simply relies on HTTPS protocol
a safe app HTTPSTM that relies on HTTPS+TrustManager
a safe app HTTPSTM2 that relies on HTTPS+TrustManager
and without standard HTTP lib*

your device is not rooted
apps are safe* and not altered

you install a nice* launcher app LAUNCHER

this can be a desktop launcher
this can be a privacy vault
this can be a lot of things

Question: what can be done?

Julien Thomas In-App virtualization and Android unrooted devices

6 / 45

Introduction

Guess it

Your environment

an app with local storage and networking:

a safe app HTTP that relies on HTTP protocol
a safe app HTTPS that simply relies on HTTPS protocol
a safe app HTTPSTM that relies on HTTPS+TrustManager
a safe app HTTPSTM2 that relies on HTTPS+TrustManager
and without standard HTTP lib*

your device is not rooted

apps are safe* and not altered

you install a nice* launcher app LAUNCHER

this can be a desktop launcher
this can be a privacy vault
this can be a lot of things

Question: what can be done?

Julien Thomas In-App virtualization and Android unrooted devices

6 / 45

Introduction

Guess it

Your environment

an app with local storage and networking:

a safe app HTTP that relies on HTTP protocol
a safe app HTTPS that simply relies on HTTPS protocol
a safe app HTTPSTM that relies on HTTPS+TrustManager
a safe app HTTPSTM2 that relies on HTTPS+TrustManager
and without standard HTTP lib*

your device is not rooted
apps are safe* and not altered

you install a nice* launcher app LAUNCHER

this can be a desktop launcher
this can be a privacy vault
this can be a lot of things

Question: what can be done?

Julien Thomas In-App virtualization and Android unrooted devices

6 / 45

Introduction

Guess it

Your environment

an app with local storage and networking:

a safe app HTTP that relies on HTTP protocol
a safe app HTTPS that simply relies on HTTPS protocol
a safe app HTTPSTM that relies on HTTPS+TrustManager
a safe app HTTPSTM2 that relies on HTTPS+TrustManager
and without standard HTTP lib*

your device is not rooted
apps are safe* and not altered

you install a nice* launcher app LAUNCHER

this can be a desktop launcher
this can be a privacy vault
this can be a lot of things

Question: what can be done?

Julien Thomas In-App virtualization and Android unrooted devices

6 / 45

Introduction

Guess it

Your environment

an app with local storage and networking:

a safe app HTTP that relies on HTTP protocol
a safe app HTTPS that simply relies on HTTPS protocol
a safe app HTTPSTM that relies on HTTPS+TrustManager
a safe app HTTPSTM2 that relies on HTTPS+TrustManager
and without standard HTTP lib*

your device is not rooted
apps are safe* and not altered

you install a nice* launcher app LAUNCHER

this can be a desktop launcher
this can be a privacy vault
this can be a lot of things

Question: what can be done?

Julien Thomas In-App virtualization and Android unrooted devices

6 / 45

Introduction

Guess it

Your environment

an app with local storage and networking:

a safe app HTTP that relies on HTTP protocol
a safe app HTTPS that simply relies on HTTPS protocol
a safe app HTTPSTM that relies on HTTPS+TrustManager
a safe app HTTPSTM2 that relies on HTTPS+TrustManager
and without standard HTTP lib*

your device is not rooted
apps are safe* and not altered

you install a nice* launcher app LAUNCHER

this can be a desktop launcher
this can be a privacy vault
this can be a lot of things

Question: what can be done?

Julien Thomas In-App virtualization and Android unrooted devices

7 / 45

Introduction

Demo

The con�guration

Openlauncher by Protektoid: the nice* launcher
TheNetworkingApp (HTTP, HTTPS, HTTPS with TM and
custom lib)
a MITM proxy with SSL capabilities over self-signed certi�cate

Test scenarios

test1: normal calls by direct launch
test2: direct launch with proxy set at Java level
test3: normal calls after user launch

Julien Thomas In-App virtualization and Android unrooted devices

7 / 45

Introduction

Demo

The con�guration

Openlauncher by Protektoid: the nice* launcher
TheNetworkingApp (HTTP, HTTPS, HTTPS with TM and
custom lib)
a MITM proxy with SSL capabilities over self-signed certi�cate

Test scenarios

test1: normal calls by direct launch
test2: direct launch with proxy set at Java level
test3: normal calls after user launch

Julien Thomas In-App virtualization and Android unrooted devices

8 / 45

Core principles of method calls/patching

Outline

2 Core principles of method calls/patching
Dalvik vs Art
Before Kitkat: Dalvik
Since Kitkat: ART
(Android) Patching

Julien Thomas In-App virtualization and Android unrooted devices

9 / 45

Core principles of method calls/patching

ART vs Dalvik

Dalvik: Virtual Machine for Android

similiar behaviors as standard JVM
better performances on low memory due to implementation
principles
JIT (Just-in-time) compilation

ART: Android RunTime

AOT (Ahead-Of-time) on install

Both rely on Dalvik Executable format and Dex bytecode

but unstable memory location due to format changes

Julien Thomas In-App virtualization and Android unrooted devices

9 / 45

Core principles of method calls/patching

ART vs Dalvik

Dalvik: Virtual Machine for Android

similiar behaviors as standard JVM
better performances on low memory due to implementation
principles
JIT (Just-in-time) compilation

ART: Android RunTime

AOT (Ahead-Of-time) on install

Both rely on Dalvik Executable format and Dex bytecode

but unstable memory location due to format changes

Julien Thomas In-App virtualization and Android unrooted devices

9 / 45

Core principles of method calls/patching

ART vs Dalvik

Dalvik: Virtual Machine for Android

similiar behaviors as standard JVM
better performances on low memory due to implementation
principles
JIT (Just-in-time) compilation

ART: Android RunTime

AOT (Ahead-Of-time) on install

Both rely on Dalvik Executable format and Dex bytecode

but unstable memory location due to format changes

Julien Thomas In-App virtualization and Android unrooted devices

10 / 45

Core principles of method calls/patching

Dalvik structures

Quick look at vm/oo/Object.h

struct ClassObject : Object {
u4 instanceData[CLASS_FIELD_SLOTS];
const char* descriptor;
char* descriptorAlloc;
u4 accessFlags;
u4 serialNumber;
...
Object* classLoader;
...
int directMethodCount;
Method* directMethods;

int virtualMethodCount;
Method* virtualMethods;
int vtableCount;
Method** vtable;
...

};

struct Method {
ClassObject* clazz;
u4 accessFlags;
u2 methodIndex;
const char* name;
...

};

Julien Thomas In-App virtualization and Android unrooted devices

11 / 45

Core principles of method calls/patching

Patching with libdvm.so

Nearly already available out-of-the-box

ClassObject* dvmFindClass(const char* descriptor, Object* loader);
ClassObject* dvmFindClassNoInit(const char* descriptor, Object* loader);
ClassObject* dvmFindSystemClass(const char* descriptor);
ClassObject* dvmFindSystemClassNoInit(const char* descriptor);
ClassObject* dvmFindLoadedClass(const char* descriptor);

Execution nearly available out-of-the-box

but need also to swap indexes
Really nice introduction by Andrey's blog1 ..

ClassObject *newclazz = g_dvmfindloadedclass(newclass);
ClassObject *oldclazz = g_dvmfindclass(origclass, newclazz->classLoader);
newm = newclazz->vtable[i];
oldclazz->vtable[i] = newm;

1
http://shadowwhowalks.blogspot.hu/2013/02/android-replacing-system-classes.html

Julien Thomas In-App virtualization and Android unrooted devices

11 / 45

Core principles of method calls/patching

Patching with libdvm.so

Nearly already available out-of-the-box

ClassObject* dvmFindClass(const char* descriptor, Object* loader);
ClassObject* dvmFindClassNoInit(const char* descriptor, Object* loader);
ClassObject* dvmFindSystemClass(const char* descriptor);
ClassObject* dvmFindSystemClassNoInit(const char* descriptor);
ClassObject* dvmFindLoadedClass(const char* descriptor);

Execution nearly available out-of-the-box

but need also to swap indexes
Really nice introduction by Andrey's blog1 ..

ClassObject *newclazz = g_dvmfindloadedclass(newclass);
ClassObject *oldclazz = g_dvmfindclass(origclass, newclazz->classLoader);
newm = newclazz->vtable[i];
oldclazz->vtable[i] = newm;

1
http://shadowwhowalks.blogspot.hu/2013/02/android-replacing-system-classes.html

Julien Thomas In-App virtualization and Android unrooted devices

12 / 45

Core principles of method calls/patching

ART structures

Quick look at
lollipop-mr1-release/runtime/mirror/art_method.h

Struct Class51 {
void* class_loader_; //less metadata
...
void* direct_methods_;
void* ifields_;
void* iftable_;
void* name_;
void* sfields_;
void* super_class_;
void* verify_error_class_;
void* virtual_methods_; //count are within

the array
void* vtable_;

};

struct ArtMethod51 {
//0x08
struct Class51* declaring_class_;
void* dex_cache_resolved_methods_;
void* dex_cache_resolved_types_;
uint32_t access_flags_;
uint32_t dex_code_item_offset_;
uint32_t dex_method_index_;
//0x20 or 0x18 on ArtMethod60
uint32_t method_index_;
...

};

Really similar to Dalvik structres: memory logic is kept

Julien Thomas In-App virtualization and Android unrooted devices

12 / 45

Core principles of method calls/patching

ART structures

Quick look at
lollipop-mr1-release/runtime/mirror/art_method.h

Struct Class51 {
void* class_loader_; //less metadata
...
void* direct_methods_;
void* ifields_;
void* iftable_;
void* name_;
void* sfields_;
void* super_class_;
void* verify_error_class_;
void* virtual_methods_; //count are within

the array
void* vtable_;

};

struct ArtMethod51 {
//0x08
struct Class51* declaring_class_;
void* dex_cache_resolved_methods_;
void* dex_cache_resolved_types_;
uint32_t access_flags_;
uint32_t dex_code_item_offset_;
uint32_t dex_method_index_;
//0x20 or 0x18 on ArtMethod60
uint32_t method_index_;
...

};

Really similar to Dalvik structres: memory logic is kept

Julien Thomas In-App virtualization and Android unrooted devices

13 / 45

Core principles of method calls/patching

Since Kitkat: ART

livdvm.so is obviously not here anymore

But we have JNIEnv.�ndClass(FromClassLoader)!

Patching implementation logic remains the same

/*
from artdroid/arthook

*/
arthook_t* create_hook(JNIEnv *env, char *clsname, const char* mname,const char*

msig, jclass hook_cls, jmethodID hookm)

arthook_t *tmp = NULL;
target = (*env)->FindClass(env, clsname);
target_meth_ID = (*env)->GetMethodID(env, target, mname, msig);

set_hook(env, tmp);
res = searchInMemoryVtable((unsigned int) h->original_meth_ID, (unsigned int)

h->original_meth_ID, isLollipop(env), false);
set_pointer(res, (unsigned int) h->hook_meth_ID);

Julien Thomas In-App virtualization and Android unrooted devices

13 / 45

Core principles of method calls/patching

Since Kitkat: ART

livdvm.so is obviously not here anymore

But we have JNIEnv.�ndClass(FromClassLoader)!

Patching implementation logic remains the same

/*
from artdroid/arthook

*/
arthook_t* create_hook(JNIEnv *env, char *clsname, const char* mname,const char*

msig, jclass hook_cls, jmethodID hookm)

arthook_t *tmp = NULL;
target = (*env)->FindClass(env, clsname);
target_meth_ID = (*env)->GetMethodID(env, target, mname, msig);

set_hook(env, tmp);
res = searchInMemoryVtable((unsigned int) h->original_meth_ID, (unsigned int)

h->original_meth_ID, isLollipop(env), false);
set_pointer(res, (unsigned int) h->hook_meth_ID);

Julien Thomas In-App virtualization and Android unrooted devices

13 / 45

Core principles of method calls/patching

Since Kitkat: ART

livdvm.so is obviously not here anymore

But we have JNIEnv.�ndClass(FromClassLoader)!

Patching implementation logic remains the same

/*
from artdroid/arthook

*/
arthook_t* create_hook(JNIEnv *env, char *clsname, const char* mname,const char*

msig, jclass hook_cls, jmethodID hookm)

arthook_t *tmp = NULL;
target = (*env)->FindClass(env, clsname);
target_meth_ID = (*env)->GetMethodID(env, target, mname, msig);

set_hook(env, tmp);
res = searchInMemoryVtable((unsigned int) h->original_meth_ID, (unsigned int)

h->original_meth_ID, isLollipop(env), false);
set_pointer(res, (unsigned int) h->hook_meth_ID);

Julien Thomas In-App virtualization and Android unrooted devices

14 / 45

Core principles of method calls/patching

Patching without proxifying

Patching over ART vs Dalvik: implementation variants

patching logic remains the same

ART: Android version dependant (see later)

ART: class de�nition vs class instanciation (Marhsmallow)

Julien Thomas In-App virtualization and Android unrooted devices

14 / 45

Core principles of method calls/patching

Patching without proxifying

Patching over ART vs Dalvik: implementation variants

patching logic remains the same

ART: Android version dependant (see later)

ART: class de�nition vs class instanciation (Marhsmallow)

Julien Thomas In-App virtualization and Android unrooted devices

15 / 45

Core principles of method calls/patching

Patching without proxifying (2)

Patching objectives

alter internal memory calls to override expected behaviors
implement execution changes without app modi�cation

Existing studies

invasive existing studies

DroidBox/Cuckoo-Droid/Xposed
APKIL/APIMonitor

non-invasive existing studies

arthook/artdroid: inject in the execution �ow of the app

Security tools only, for rooted devices only

Julien Thomas In-App virtualization and Android unrooted devices

15 / 45

Core principles of method calls/patching

Patching without proxifying (2)

Patching objectives

alter internal memory calls to override expected behaviors
implement execution changes without app modi�cation

Existing studies
invasive existing studies

DroidBox/Cuckoo-Droid/Xposed
APKIL/APIMonitor

non-invasive existing studies

arthook/artdroid: inject in the execution �ow of the app

Security tools only, for rooted devices only

Julien Thomas In-App virtualization and Android unrooted devices

15 / 45

Core principles of method calls/patching

Patching without proxifying (2)

Patching objectives

alter internal memory calls to override expected behaviors
implement execution changes without app modi�cation

Existing studies
invasive existing studies

DroidBox/Cuckoo-Droid/Xposed
APKIL/APIMonitor

non-invasive existing studies

arthook/artdroid: inject in the execution �ow of the app

Security tools only, for rooted devices only

Julien Thomas In-App virtualization and Android unrooted devices

16 / 45

Core principles of app virtualization/proxifying

Outline

3 Core principles of app virtualization/proxifying
Dynamic code loading
Virtualization/proxifying

Julien Thomas In-App virtualization and Android unrooted devices

17 / 45

Core principles of app virtualization/proxifying

Dynamic code loading vs proxifying

Dynamic code loading

static : ClassLoader .loadClass()
payloaded:DexClassLoader, DexFile (RobotCore)

for (DexFile dexFile : dexFiles){
Class clazz = dexFile.loadClass(className, this);
if (clazz != null) return clazz;

}

used

by malwares
to dynamically load code: add ons, frameworks (literature)

Weak usages subject to multiple exploit (symantec report)

Injection into current process, no virtualization

Julien Thomas In-App virtualization and Android unrooted devices

17 / 45

Core principles of app virtualization/proxifying

Dynamic code loading vs proxifying

Dynamic code loading

static : ClassLoader .loadClass()
payloaded:DexClassLoader, DexFile (RobotCore)

for (DexFile dexFile : dexFiles){
Class clazz = dexFile.loadClass(className, this);
if (clazz != null) return clazz;

}

used

by malwares
to dynamically load code: add ons, frameworks (literature)

Weak usages subject to multiple exploit (symantec report)

Injection into current process, no virtualization

Julien Thomas In-App virtualization and Android unrooted devices

17 / 45

Core principles of app virtualization/proxifying

Dynamic code loading vs proxifying

Dynamic code loading

static : ClassLoader .loadClass()
payloaded:DexClassLoader, DexFile (RobotCore)

for (DexFile dexFile : dexFiles){
Class clazz = dexFile.loadClass(className, this);
if (clazz != null) return clazz;

}

used

by malwares
to dynamically load code: add ons, frameworks (literature)

Weak usages subject to multiple exploit (symantec report)

Injection into current process, no virtualization

Julien Thomas In-App virtualization and Android unrooted devices

17 / 45

Core principles of app virtualization/proxifying

Dynamic code loading vs proxifying

Dynamic code loading

static : ClassLoader .loadClass()
payloaded:DexClassLoader, DexFile (RobotCore)

for (DexFile dexFile : dexFiles){
Class clazz = dexFile.loadClass(className, this);
if (clazz != null) return clazz;

}

used

by malwares
to dynamically load code: add ons, frameworks (literature)

Weak usages subject to multiple exploit (symantec report)

Injection into current process, no virtualization

Julien Thomas In-App virtualization and Android unrooted devices

18 / 45

Core principles of app virtualization/proxifying

What virtualizating/proxifying means here?

Dynamic application code loading

1. dynamic call loading: LoadedApk.makeApplication.call
2. thread attachment
3. thread launch

Android work�ow preservation within the loaded code

1. userId emulation and preservation
2. activity emulation
3. and lot more

Julien Thomas In-App virtualization and Android unrooted devices

18 / 45

Core principles of app virtualization/proxifying

What virtualizating/proxifying means here?

Dynamic application code loading

1. dynamic call loading: LoadedApk.makeApplication.call
2. thread attachment
3. thread launch

Android work�ow preservation within the loaded code

1. userId emulation and preservation
2. activity emulation
3. and lot more

Julien Thomas In-App virtualization and Android unrooted devices

19 / 45

Core principles of app virtualization/proxifying

Some terminology

Proxi�er: the host app which runs on the system

Proxi�erMemory: the memory of host app

Proxi�ed: the hosted app proxi�ed by Proxi�er

VActivity: an activity of Proxi�ed , proxi�ed by Proxi�er

VService: a service of Proxi�ed , proxi�ed by Proxi�er

Pro�xiedMemory: the memory of Proxi�ed controled by
Proxi�er

Julien Thomas In-App virtualization and Android unrooted devices

19 / 45

Core principles of app virtualization/proxifying

Some terminology

Proxi�er: the host app which runs on the system

Proxi�erMemory: the memory of host app

Proxi�ed: the hosted app proxi�ed by Proxi�er

VActivity: an activity of Proxi�ed , proxi�ed by Proxi�er

VService: a service of Proxi�ed , proxi�ed by Proxi�er

Pro�xiedMemory: the memory of Proxi�ed controled by
Proxi�er

Julien Thomas In-App virtualization and Android unrooted devices

20 / 45

Core principles of app virtualization/proxifying

Proxifying objectives

Vault apps and hide them from

other users
other apps
the system

Multi-instanciation support

each instance has its own user_id , directory, ..
add a new (user-requested) features for mainstream apps

Totally outside of standard execution scopes

updates? security?

Julien Thomas In-App virtualization and Android unrooted devices

20 / 45

Core principles of app virtualization/proxifying

Proxifying objectives

Vault apps and hide them from

other users
other apps
the system

Multi-instanciation support

each instance has its own user_id , directory, ..
add a new (user-requested) features for mainstream apps

Totally outside of standard execution scopes

updates? security?

Julien Thomas In-App virtualization and Android unrooted devices

20 / 45

Core principles of app virtualization/proxifying

Proxifying objectives

Vault apps and hide them from

other users
other apps
the system

Multi-instanciation support

each instance has its own user_id , directory, ..
add a new (user-requested) features for mainstream apps

Totally outside of standard execution scopes

updates? security?

Julien Thomas In-App virtualization and Android unrooted devices

21 / 45

Core principles of app virtualization/proxifying

How proxifying works?

Proxifying: dynamic code loading and Android work�ow
preservation

application integration: new process, for stability purposes
application call: LoadedApk.makeApplication.call

int userId = VUserHandle.myUserId();
ProviderInfo info = VPackageManager.get().resolveContentProvider(name, 0, userId);
if (info != null && info.enabled && isAppPkg(info.packageName)) {

int targetVPid = VActivityManager.get().initProcess(info.packageName,
info.processName, userId);

if (targetVPid == -1) return null;
}

VirtualRuntime .setupRuntime(data.processName, data.appInfo);

int targetSdkVersion = data.appInfo.targetSdkVersion;

Object mainThread = VirtualCore .mainThread();

mInitialApplication = LoadedApk.makeApplication.call(data.info, false, null);
mirror.android.app.ActivityThread.mInitialApplication.set(mainThread,

mInitialApplication);
mInstrumentation.callApplicationOnCreate(mInitialApplication);

Julien Thomas In-App virtualization and Android unrooted devices

22 / 45

Core principles of app virtualization/proxifying

How proxifying works? (2)

Activities are stubbed as intended (threads)
Services are stubbed as intended (process)

<activity

android:name=" com.lody.virtual .client.stub.StubActivity$C0"

android:configChanges="mcc|mnc|locale|touchscreen|keyboard|keyboardHidden|
navigation|orientation|screenLayout|uiMode|screenSize|smallestScreenSize|fontScale"
android:process=":p0"

android:taskAffinity=" com.lody.virtual.vt "

android:theme="@style/VATheme" />

root@generic_x86_64:/ # ps | grep u0_a56

u0_a56 16607 1318 1302468 51896 binder_thr 00f73c1a16 S io.virtualapp

u0_a56 16630 1318 1283916 35540 ep_poll 00f73c1fc5 S io.virtualapp :x

u0_a56 16717 1318 1283412 33108 0 00f3b22646 R io.virtualapp :p0

root@generic_x86_64:/ # ps | grep u0_a56

u0_a56 16607 1318 1305084 51492 ep_poll 00f73c1fc5 S io.virtualapp

u0_a56 16630 1318 1284396 35960 ep_poll 00f73c1fc5 S io.virtualapp:x

u0_a56 16717 1318 1306428 53828 ep_poll 00f73c1fc5 S com.weare.thenetworkingapp

Julien Thomas In-App virtualization and Android unrooted devices

23 / 45

Core principles of app virtualization/proxifying

How proxifying works? (3)

Virtualized apps get custom user_id

public static int getUid(int userId, int appId) {
if (MU_ENABLED) {

return userId * PER_USER_RANGE + (appId % PER_USER_RANGE);
} else {

return appId;
}

}

�Real� state is preserved

activities are proxied
services are proxied

newShortcutIntent.putExtra("_VA_|_user_id_", VUserHandle.myUserId());

Julien Thomas In-App virtualization and Android unrooted devices

23 / 45

Core principles of app virtualization/proxifying

How proxifying works? (3)

Virtualized apps get custom user_id

public static int getUid(int userId, int appId) {
if (MU_ENABLED) {

return userId * PER_USER_RANGE + (appId % PER_USER_RANGE);
} else {

return appId;
}

}

�Real� state is preserved

activities are proxied
services are proxied

newShortcutIntent.putExtra("_VA_|_user_id_", VUserHandle.myUserId());

Julien Thomas In-App virtualization and Android unrooted devices

24 / 45

Attacks through proxi�cation and patching

Outline

4 Attacks through proxi�cation and patching
Why proxifying and patching?
Patching in real life
Proxifying in real life
Patching and proxifying in real life

Julien Thomas In-App virtualization and Android unrooted devices

25 / 45

Attacks through proxi�cation and patching

Attacks through proxi�cation without patching

Objectives

side-load apps trusted by the user
control as much as possible from this app

Features

be more than a simple code loading

normal execution is preserved
no detectable payload (antivirus)
byzatine approach (user feedbacks)

trigger user speci�c decisions

user application speci�c
user application version speci�c

Julien Thomas In-App virtualization and Android unrooted devices

25 / 45

Attacks through proxi�cation and patching

Attacks through proxi�cation without patching

Objectives

side-load apps trusted by the user
control as much as possible from this app

Features
be more than a simple code loading

normal execution is preserved
no detectable payload (antivirus)
byzatine approach (user feedbacks)

trigger user speci�c decisions

user application speci�c
user application version speci�c

Julien Thomas In-App virtualization and Android unrooted devices

25 / 45

Attacks through proxi�cation and patching

Attacks through proxi�cation without patching

Objectives

side-load apps trusted by the user
control as much as possible from this app

Features
be more than a simple code loading

normal execution is preserved
no detectable payload (antivirus)
byzatine approach (user feedbacks)

trigger user speci�c decisions

user application speci�c
user application version speci�c

Julien Thomas In-App virtualization and Android unrooted devices

26 / 45

Attacks through proxi�cation and patching

Attacks through proxi�cation without patching
(2)

What Proxi�er has to do?
implement the Proxi�ed app permissions

⋃
Proxi�ed

Σapp

or deny access to the new requested Proxi�ed app permissions

Bridge �lesystem for hosted apps

eg. Proxi�ed app real ID is the Proxi�er ID access

What can the Proxi�er do?

control the Proxi�ed local data (cf. above)
partially override default environment settings

singleton con�guration (seems to) be preserved on process
(fork)

Julien Thomas In-App virtualization and Android unrooted devices

27 / 45

Attacks through proxi�cation and patching

Attacks through proxi�cation without patching
(3)

Environment settings overriding: use cases?
HTTP con�guration: Proxy settings (DNS?)

StrictMode.ThreadPolicy p=new StrictMode.ThreadPolicy.Builder().permitAll().build();
StrictMode.setThreadPolicy(p);
System.setProperty("http.proxyHost","IP");
System.setProperty("http.proxyPort","$PORT$");

HTTPS con�guration: HTTPS proxy + Fake TrustManager

SSLUtilities.trustAllHostnames();
HttpsURLConnection.setDefaultHostnameVerifier(new FakeHostnameVerifier());
public boolean verify(String hostname, SSLSession session){return(true);}

SSLUtilities.trustAllHttpsCertificates();
try {

context = SSLContext.getInstance("SSL");
context.init(null, _trustManagers, new SecureRandom());

} catch(GeneralSecurityException gse) { }
HttpsURLConnection.setDefaultSSLSocketFactory(context.getSocketFactory());
IO.setDefaultSSLContext(context);

Julien Thomas In-App virtualization and Android unrooted devices

27 / 45

Attacks through proxi�cation and patching

Attacks through proxi�cation without patching
(3)

Environment settings overriding: use cases?
HTTP con�guration: Proxy settings (DNS?)

StrictMode.ThreadPolicy p=new StrictMode.ThreadPolicy.Builder().permitAll().build();
StrictMode.setThreadPolicy(p);
System.setProperty("http.proxyHost","IP");
System.setProperty("http.proxyPort","$PORT$");

HTTPS con�guration: HTTPS proxy + Fake TrustManager

SSLUtilities.trustAllHostnames();
HttpsURLConnection.setDefaultHostnameVerifier(new FakeHostnameVerifier());
public boolean verify(String hostname, SSLSession session){return(true);}

SSLUtilities.trustAllHttpsCertificates();
try {

context = SSLContext.getInstance("SSL");
context.init(null, _trustManagers, new SecureRandom());

} catch(GeneralSecurityException gse) { }
HttpsURLConnection.setDefaultSSLSocketFactory(context.getSocketFactory());
IO.setDefaultSSLContext(context);

Julien Thomas In-App virtualization and Android unrooted devices

28 / 45

Attacks through proxi�cation and patching

Patching from scratch?

Before fully understanding the whereabout of proxifying,
always better to try from scratch

full understanding of Dalvik vs ART regarding method
patching
full understanding of ART version regarding method patching
full understanding of what is to be expected from libraries

And

lot of existing work on Dalvik
can not �nd anything more funny than live-patching of object
structures in memory at C level through JNI on Android

Julien Thomas In-App virtualization and Android unrooted devices

29 / 45

Attacks through proxi�cation and patching

Patching from scratch (2)?

But ..

easy to waste hours / days because of incorrect
�documentation�
easy to waste hours / days because .. it is not so easy to
reverse ART principles for multiple AOSP variants
Need to know what you want

searchInMemoryVtable vs searchInMemoryStable
from Proxi�ed or Proxi�er or DEX structure?
to Proxi�ed or Proxi�er or DEX structure?

Julien Thomas In-App virtualization and Android unrooted devices

30 / 45

Attacks through proxi�cation and patching

Patching from scratch (3)?

But (2)
hooking principles changes

Lollipop: h/C structures
Marshmalow: h/c++ structures

memory size changes

Lollipop: object are pre�xed to the structure .. in memory
Marshmalow: object are NOT pre�xed .. but we have (some)
uint64 instead of uint32
and uint64 points to uint32, obviously

Proxifying from scratch: not an option?

Julien Thomas In-App virtualization and Android unrooted devices

30 / 45

Attacks through proxi�cation and patching

Patching from scratch (3)?

But (2)
hooking principles changes

Lollipop: h/C structures
Marshmalow: h/c++ structures

memory size changes

Lollipop: object are pre�xed to the structure .. in memory
Marshmalow: object are NOT pre�xed .. but we have (some)
uint64 instead of uint32
and uint64 points to uint32, obviously

Proxifying from scratch: not an option?

Julien Thomas In-App virtualization and Android unrooted devices

30 / 45

Attacks through proxi�cation and patching

Patching from scratch (3)?

But (2)
hooking principles changes

Lollipop: h/C structures
Marshmalow: h/c++ structures

memory size changes

Lollipop: object are pre�xed to the structure .. in memory
Marshmalow: object are NOT pre�xed .. but we have (some)
uint64 instead of uint32
and uint64 points to uint32, obviously

Proxifying from scratch: not an option?

Julien Thomas In-App virtualization and Android unrooted devices

31 / 45

Attacks through proxi�cation and patching

Patching from scratch (4)?

static int set_hook_mm(JNIEnv *env, arthook_t

*h){
unsigned int * pClass = (unsigned int *)

((unsigned int)h->original_meth_ID +
MARSHMALLOW_CLAZZ_OFF);

unsigned int * mid_index = (unsigned int *)
((unsigned int)h->original_meth_ID +
MARSHMALLOW_METHOD_INDEX_OFF);

unsigned int* _meth = (unsigned int*)(
(unsigned int) *pClazz + (*mid_index) *
4 + MARSHMALLOW_VTABLE_DEX_OFF) ;

searchInMemoryVtable(pClass)
}

// searchInMemoryVtable(pClass) or
// getInMemoryVtable(pClass)?
unsigned int* searchInMemoryVtable(unsigned

int* pClass){
vtable = (unsigned int*) ((*pClazz) +

MARSHMALLOW_VMETHODS_PTR_OFF);
vmethods_len = (unsigned int*) ((*vtable) +

VMETHS_LEN_OFF);
virtual_method_ = ((unsigned int *)

(*vtable + 12 + _mindex * 4));
return virtual_method_;

}

//setDefaultSSLSocketFactory
index 0: 1886290912
index 4: 1880348128
index 8: 1880334480
index 12: 524297 //0x80009 = 0x80001+ 0x00008
index 16: 2873304
index 20: 26711
index 24: 4
index 28: 1922846736

name: 0ï¿ 1
2
hpï¿ 1

2
@O

index 32: 1887455600
index 36: 0
index 40: 1885424288

vtable index 8: 71
vtable index 12: 1889950608
vtable index 28: 1889950768

virtual_methods_ memory: 1889950768
virtual_methods_ index 0: 1885928616
virtual_methods_ index 12: 524289 //0x80001
virtual_methods_ index 16: 782664
virtual_methods_ index 20: 13009
virtual_methods_ index 24: 4

Julien Thomas In-App virtualization and Android unrooted devices

32 / 45

Attacks through proxi�cation and patching

Proxifying correctly?

Using a proxi�er is pretty easy but ... making it a viable
solution is less easy

where do we proxify?
when do we proxify?

Proof of concept: combining the Virtualapp proxifying lib,

with a launcher composed of a core and an front..

how to make the lib easy to be integrated while keeping
capacity to upgrade it?

Ends up with a really nice project structure

Julien Thomas In-App virtualization and Android unrooted devices

32 / 45

Attacks through proxi�cation and patching

Proxifying correctly?

Using a proxi�er is pretty easy but ... making it a viable
solution is less easy

where do we proxify?
when do we proxify?

Proof of concept: combining the Virtualapp proxifying lib,

with a launcher composed of a core and an front..

how to make the lib easy to be integrated while keeping
capacity to upgrade it?

Ends up with a really nice project structure

Julien Thomas In-App virtualization and Android unrooted devices

32 / 45

Attacks through proxi�cation and patching

Proxifying correctly?

Using a proxi�er is pretty easy but ... making it a viable
solution is less easy

where do we proxify?
when do we proxify?

Proof of concept: combining the Virtualapp proxifying lib,

with a launcher composed of a core and an front..

how to make the lib easy to be integrated while keeping
capacity to upgrade it?

Ends up with a really nice project structure

Julien Thomas In-App virtualization and Android unrooted devices

33 / 45

Attacks through proxi�cation and patching

Proxifying correctly (2)?

Example of a complete silent patching project

Julien Thomas In-App virtualization and Android unrooted devices

34 / 45

Attacks through proxi�cation and patching

Proxifying and patching: objectives

1. Use everything available through proxifying

local storage
singleton and default environment settings

2. Customize interaction between Proxi�ed and the system

hook calls
rede�ne threads, processes and UIDs
something else (lie about IPCs)?

Julien Thomas In-App virtualization and Android unrooted devices

34 / 45

Attacks through proxi�cation and patching

Proxifying and patching: objectives

1. Use everything available through proxifying

local storage
singleton and default environment settings

2. Customize interaction between Proxi�ed and the system

hook calls
rede�ne threads, processes and UIDs
something else (lie about IPCs)?

Julien Thomas In-App virtualization and Android unrooted devices

35 / 45

Attacks through proxi�cation and patching

Patching and proxifying: logic

Is it simply proxifying+patching?

Need to know what you want

which DEX �le to load: Proxi�er one vs Proxi�ed one?

load the Proxi�er DEX
rediret to the Proxi�er DEX
keep the Proxi�er methods (proxy vs patch)

which version of Android SDK is targeted

hooking libs ... have con�icting dependencies with the

Virtualapp proxifying lib

arthook (C) vs artdroid (cpp)
hooking (stability) is SDK versioned

Julien Thomas In-App virtualization and Android unrooted devices

35 / 45

Attacks through proxi�cation and patching

Patching and proxifying: logic

Is it simply proxifying+patching?

Need to know what you want
which DEX �le to load: Proxi�er one vs Proxi�ed one?

load the Proxi�er DEX
rediret to the Proxi�er DEX
keep the Proxi�er methods (proxy vs patch)

which version of Android SDK is targeted

hooking libs ... have con�icting dependencies with the

Virtualapp proxifying lib

arthook (C) vs artdroid (cpp)
hooking (stability) is SDK versioned

Julien Thomas In-App virtualization and Android unrooted devices

35 / 45

Attacks through proxi�cation and patching

Patching and proxifying: logic

Is it simply proxifying+patching?

Need to know what you want
which DEX �le to load: Proxi�er one vs Proxi�ed one?

load the Proxi�er DEX
rediret to the Proxi�er DEX
keep the Proxi�er methods (proxy vs patch)

which version of Android SDK is targeted

hooking libs ... have con�icting dependencies with the

Virtualapp proxifying lib

arthook (C) vs artdroid (cpp)
hooking (stability) is SDK versioned

Julien Thomas In-App virtualization and Android unrooted devices

36 / 45

Attacks through proxi�cation and patching

Patching and proxifying: logic (2)

Patching from scratch happened to be a good decision

Julien Thomas In-App virtualization and Android unrooted devices

37 / 45

Attacks through proxi�cation and patching

Patching and proxifying with libraries

Global �patching and proxifying� picture

Julien Thomas In-App virtualization and Android unrooted devices

38 / 45

Aftermatch

Outline

5 Aftermatch
Detection method
(How to avoid) detection

Julien Thomas In-App virtualization and Android unrooted devices

39 / 45

Aftermatch

Detection method at app level

As a security app

detecting malware by signature
detecting malware by library signature

Need to extract data from the APKs

Within the app

blocking plugin technology: Plugin Killer2 try to detect
unexpected status ... inside the app

Then what?

blocking vs asking user consent

2
https://www.blackhat.com/asia-17/brie�ngs.html#anti-plugin-dont-let-your-app-play-as-an-

android-plugin

Julien Thomas In-App virtualization and Android unrooted devices

40 / 45

Aftermatch

Avoid detection method at app level

Within the app

plugin is made with virtualizable method
detection is made with virtualizable method
detection is made based on controlable attributes

virtualization detection game

Minimizing virtualization library footprint

JNI-bridge most of the work

Minimizing virtualization footprint

app private folder can be spoofed and aliased at app level
just have to be carefull on when and how spoo�ng

Julien Thomas In-App virtualization and Android unrooted devices

40 / 45

Aftermatch

Avoid detection method at app level

Within the app

plugin is made with virtualizable method
detection is made with virtualizable method
detection is made based on controlable attributes

virtualization detection game

Minimizing virtualization library footprint

JNI-bridge most of the work

Minimizing virtualization footprint

app private folder can be spoofed and aliased at app level
just have to be carefull on when and how spoo�ng

Julien Thomas In-App virtualization and Android unrooted devices

40 / 45

Aftermatch

Avoid detection method at app level

Within the app

plugin is made with virtualizable method
detection is made with virtualizable method
detection is made based on controlable attributes

virtualization detection game

Minimizing virtualization library footprint

JNI-bridge most of the work

Minimizing virtualization footprint

app private folder can be spoofed and aliased at app level
just have to be carefull on when and how spoo�ng

Julien Thomas In-App virtualization and Android unrooted devices

41 / 45

Aftermatch

Avoid detection method at app level (2)

Minimizing virtualization footprint is possible but ...
loading time is an issue on low performance devices

could be solved with pre-loading

lot of data shall be virtualized

Proxi�er de�nition
Proxi�ed live de�nition: activities and stubs
Proxi�ed live de�nition: requested app

virtualization data are leaked

e.g: virtual UIDs that match system UIDs

there is still lot to do

Julien Thomas In-App virtualization and Android unrooted devices

41 / 45

Aftermatch

Avoid detection method at app level (2)

Minimizing virtualization footprint is possible but ...
loading time is an issue on low performance devices

could be solved with pre-loading

lot of data shall be virtualized

Proxi�er de�nition
Proxi�ed live de�nition: activities and stubs
Proxi�ed live de�nition: requested app

virtualization data are leaked

e.g: virtual UIDs that match system UIDs

there is still lot to do

Julien Thomas In-App virtualization and Android unrooted devices

41 / 45

Aftermatch

Avoid detection method at app level (2)

Minimizing virtualization footprint is possible but ...
loading time is an issue on low performance devices

could be solved with pre-loading

lot of data shall be virtualized

Proxi�er de�nition
Proxi�ed live de�nition: activities and stubs
Proxi�ed live de�nition: requested app

virtualization data are leaked

e.g: virtual UIDs that match system UIDs

there is still lot to do

Julien Thomas In-App virtualization and Android unrooted devices

41 / 45

Aftermatch

Avoid detection method at app level (2)

Minimizing virtualization footprint is possible but ...
loading time is an issue on low performance devices

could be solved with pre-loading

lot of data shall be virtualized

Proxi�er de�nition
Proxi�ed live de�nition: activities and stubs
Proxi�ed live de�nition: requested app

virtualization data are leaked

e.g: virtual UIDs that match system UIDs

there is still lot to do

Julien Thomas In-App virtualization and Android unrooted devices

42 / 45

Aftermatch

Avoid detection method at system level

Make it be system aware, user-unaware

what if virtualization is always here?
what if virtualization is system-justi�ed?
what if virtualization is user-justi�ed?

Make it stealth

what if data stealing is 90% o�, 10%user-speci�c?

what if number of process is targeted?
what if number of permission is targeted?

what if C&C channel relies on GCM/FCM?

Julien Thomas In-App virtualization and Android unrooted devices

42 / 45

Aftermatch

Avoid detection method at system level

Make it be system aware, user-unaware

what if virtualization is always here?
what if virtualization is system-justi�ed?
what if virtualization is user-justi�ed?

Make it stealth
what if data stealing is 90% o�, 10%user-speci�c?

what if number of process is targeted?
what if number of permission is targeted?

what if C&C channel relies on GCM/FCM?

Julien Thomas In-App virtualization and Android unrooted devices

43 / 45

Aftermatch

Shall we be worried?

Analysis of top/newest 15k applications, 18.5k apks, 8 stores

permission count distribution (top: 437)

1-30 31-60 61-90 91-120 >120

0.2
0.47
1.1
7.5
90

%

suspicious processed activities count distribution (top: 1216)

1-30 31-90 91-120 121-150 >150

0.5
1.5
2

5.1
91

%

Julien Thomas In-App virtualization and Android unrooted devices

43 / 45

Aftermatch

Shall we be worried?

Analysis of top/newest 15k applications, 18.5k apks, 8 stores

permission count distribution (top: 437)

1-30 31-60 61-90 91-120 >120

0.2
0.47
1.1
7.5
90

%

suspicious processed activities count distribution (top: 1216)

1-30 31-90 91-120 121-150 >150

0.5
1.5
2

5.1
91

%

Julien Thomas In-App virtualization and Android unrooted devices

44 / 45

Conclusion

Outline

6 Conclusion

Julien Thomas In-App virtualization and Android unrooted devices

45 / 45

Conclusion

Conclusion

Patching is a complex yet interesting subject

hooking already loaded virtual methods is not hard
hooking other is (and future works)

Proxifying opens up new opportunities

Potential future works exist

stabilized hooking framework
extended hooking framework (Proxi�ed and system sides)
stabilized detection avoidance framework

Protektoid is here

Protektoid Community: open to survey ideas

Julien Thomas In-App virtualization and Android unrooted devices

45 / 45

Conclusion

Conclusion

Patching is a complex yet interesting subject

hooking already loaded virtual methods is not hard
hooking other is (and future works)

Proxifying opens up new opportunities

Potential future works exist

stabilized hooking framework
extended hooking framework (Proxi�ed and system sides)
stabilized detection avoidance framework

Protektoid is here

Protektoid Community: open to survey ideas

Julien Thomas In-App virtualization and Android unrooted devices

45 / 45

Conclusion

Conclusion

Patching is a complex yet interesting subject

hooking already loaded virtual methods is not hard
hooking other is (and future works)

Proxifying opens up new opportunities

Potential future works exist

stabilized hooking framework
extended hooking framework (Proxi�ed and system sides)
stabilized detection avoidance framework

Protektoid is here

Protektoid Community: open to survey ideas

Julien Thomas In-App virtualization and Android unrooted devices

45 / 45

Conclusion

Conclusion

Patching is a complex yet interesting subject

hooking already loaded virtual methods is not hard
hooking other is (and future works)

Proxifying opens up new opportunities

Potential future works exist

stabilized hooking framework
extended hooking framework (Proxi�ed and system sides)
stabilized detection avoidance framework

Protektoid is here

Protektoid Community: open to survey ideas

Julien Thomas In-App virtualization and Android unrooted devices

	Presentation
	Introduction
	Demo

	Core principles of method calls/patching
	Dalvik vs Art
	Before Kitkat: Dalvik
	Since Kitkat: ART
	(Android) Patching

	Core principles of app virtualization/proxifying
	Dynamic code loading
	Virtualization/proxifying

	Attacks through proxification and patching
	Why proxifying and patching?
	Patching in real life
	Proxifying in real life
	Patching and proxifying in real life

	Aftermatch
	Detection method
	(How to avoid) detection

	Conclusion

